
The Incorrectness of a Shuffle Algorithm

DONG Yuxuan <https://www.dyx.name>

11 Jan 2023 (+0800)

Intuition fails frequently while designing stochastic algorithms. This text provides an example. A shuffle
algorithm inspired by the merge sort was presented. It seems correct intuitively, but can be proved wrong.

The Algorithm

The input array is divided into two parts as equal length as possible. After two parts are recursively
shuffled, they’re merged to one array. The merge procedure is similar to the one in merge sort. But the
decision of which element should be merged is based on the output of a random number generator, instead
of the comparison between two elements. The C implementation is the following.

#define N 65536
int *mshuf(int *in, int n)
{
 static int a[N];
 int m, *l, *r, *p;

 if (n < 2)
 return in;
 m = n/2;
 l = mshuf(in, m);
 r = mshuf(in+m, n-m);
 p = a;
 while (l<in+m && r < in+n)
 if (rand()%2)
 *p++ = *l++;
 else
 *p++ = *r++;
 while (l<in+m)
 *p++ = *l++;
 while (r<in+n)
 *p++ = *r++;
 return memcpy(in, a, n*sizoef(*a));
}

The Algorithm Is Wrong

For , is a power of 2, we define event as after mshuf()
returned. Assume mshuf() is correct, we should have:

We will prove that it’s false. To make , after the recursive mshuf() calls returned,
we must have and . Denote this event as . By assuming the
correctness of mshuf(), we have:

https://www.dyx.name/

After occurred, we must ensure in the merge procedure. We define event as under the
condition that occurred. By the multiplication rule, we have:

When decide the value of a[i], if , we randomly chose a value from l[] or r[]. If , we can
only take the value from r[] because all values in l[] are merged. Thus we have:

Thus we get:

Then we get:

Thus mshuf() is incorrect.

