“Memset” in O(1)

DONG Yuxuan <https://dyx.name>

11 Nov 2023 (+0800)
Introduction

In many cases we need an array with initialized elements, e.g., a[i] = 1, or more dynamic, a[i] = 1i.
The initialization uses O(n) time for n elements. If there are only few elements will be accessed, the
initialization becomes the bottleneck of performance. Exercise 1.9 of [2] describes a data structure
maintaining a list of elements with O(l)-time random access as arrays, but also with

« O(1) initialization and reset time;

+ O(n) extra space;

¢ not relying on memory-initialization values of the system.

All the above complexities are for the worst case. According to [2], the data structure can at least be
traced back to exercise 2.12 of [1].

A C-like pseudo language is used to describe the data structure. Formally, the data structure has the
following operations.

e void init(void);

e int get(int i, int d);

e void set(int i, int v);

The init () function initializes or resets the data structure. The set (i, v) function sets the value of

the i-th element to v. If set () has been called on an element, the element is called dirty. The get (1,
d) function returns the i-th element: if the element is not dirty, the default value d is returned.

Implementation

The data structure maintains 3 arrays and an integer variable.

#define N 1024

int data[N];

int dirty[N]; /* indexes of dirty elements */
int ndirty; /* size of dirty[] */

int invert[N]; /* inverted indexes of dirty[] */

The data[] array stores the elements: if the i-th element is dirty, data[i] contains its value, otherwise
data[i] is undefined.

The dirty[] array stores indexes of dirty elements and ndirty indicates the size of dirty][].

https://dyx.name/

The invert[] array is the “inverted index” of dirty[]: invert[i] represents the index of data[i]
indirty[] if the i-th element is dirty, otherwise invert[i] is undefined.

The init () function just sets ndirty to zero.

void init(void)
{
ndirty = 0;

If invert[i] is not smaller than ndirty, its value is definitely undefined, thus the element is not dirty.
If invert[i] is smaller than ndirty, the element may be dirty, but there is still a chance that invert
[i] happens to be a value smaller than ndirty. Fortunately, as invert[i] is smaller than ndirty, dir
ty[invert[i]] is defined. Thus we check if dirty[invert[i]] equals to i. If this is true, the
element is dirty, otherwise it’s not.

The get () and set () functions use the above check to determine the action.

int get(int i, int d)

{
int j;
j = invert[i];
if (j < ndirty && dirty[j] == 1)
return datal[i];
return d;
}
void set(int i, int v)
{
int j;
dataf[i] = v;
j = invert[i];
if (j < ndirty && dirty[j] == 1)
return;
dirty[ndirty] = i;
invert[i] = ndirty++;
}
Application

The general sampling problem has a de-facto algorithm: run the Fisher-Yates shuffle [3:5.3] but terminate
after the first k elements are determined. The following code samples k integers from the array a[] with n

elements.
for (i = 0; i < k; i++) {
j =i + rand() % (n - 1i);
printf("sd\n", a[jl);
a[jl = aril;
}

Unlike the standard Fisher-Yates, I don’t actually swap a[i] and a[j] here because a[i] will never be
accssed again.

Sometimes we don’t want to sample from an arbitrary array but from the first n natural numbers:
0,1,...,n — 1. This can be done by initializing the array to natural numbers then runs the above sampling

algorithm.

for (i = 0; i < n; i++)
afil = 1i;

This uses O(n) + O(k) = O(n) time. If we use the data structure introduced in this text, it could be
decreased to O(k).

init();

for (i = 0; i < k; i++) {
j =1 4+ rand() % (n - 1i);
printf("%d\n", get(j, J));
set(j, get(i, i));

Remarks
The application to sampling is served as my solution to exercise 1.4 of [2].

The natural solution to initializing O(n) elements in O(1) is setting up an isdirty[] array. If the i-th
element is dirty, set isdirty[i] to 1, otherwise 0. This solution relies on the memory-initialization
values of the system to be zero and it needs O(n) time for reset.

These downsides are not that important because (1) setting a restriction on not relying on memory-
initialization values is more an intellectual game than practicability; (2) reset is a rare demand.

However, the data structure described in this text is a tremendous example of how simply a seemed
impossible task can be solved algorithmically.

The former text said it uses a C-like pseudo language but you may notice that it’s actually the real C
programming language. The reason this text can’t claim it’s real C is that accessing uninitialized objects
in C is an undefined behavior. It may not behave correctly with some compilers.

References

[17 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. 1974. The Design and Analysis of Computer Algorithms.
Addison-Wesley.

[2] Jon Bentley. 1999. Programming Pearls (2nd Ed.). Addison-Wesley.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to
Algorithms Third Edition. Mit Press.

